DIF Clearinghouse

PO. Box 638
Newton Lower Falls, MA 02162

DIF

TECHNICAL SPECIFICATION

DIFEM is the format for the exchange of data
developed by Software Arts tmM,

DIF-0283

© Copyright 1983 by Software Arts Products Corp.
All rights reserved.

Software Arts 1s a trademark of Software Arts Products Corp. and
Software Arts, Inc. ’

DIF is a trademark of Software Arts Products Corp.

TK, TK! and TK!Solver are trademarks of Software Arts, Inc.
VisiCalc 1s a registered trademark of Software Arts, Inc.
VisiPlot, VisiTrend/VisiPlot are trademarks of VisiCorp.
TREND-SPOTTER 1is a registered trademark of Friend Information
Systems.

Limitea License to Copy:

This Technical Specitication is intended for the use of the
original purchaser only. The original purchaser is hereby
licensed to copy it for his own use, provided that this notice,
together with the copyright, trademark and warranty notices, are
reproduced on each such copy. Copying of this document in any
form for purposes of resale, license or distribution is prohi=-
bited.

No Warranty:

Tnis document is being published to enhance the usefulness of
DIF, a format for data interchange, as used by the VisiCalc (R)
and other programs.

NEITHER SOFTWARE ARTS PRODUCTS CORP. NOR THE DIF CLEARINGHOUSE
MAKES ANY WARRANTY, EXPRESS OR IMPLIED, WITH RESPECT TO THE
QUALITY, ACCURACY Ok FREEDOM FROM ERROR OF THE DIF FORMAT OR
OTHER CONTENTS OF THIS DOCUMENT, INCLUDING, WITHOUT LIMITATION,
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR OF FITNESS FOR A
PARTICULAR PURPOSE , AND SOFTWARE ARTS PRODUCTS CORP.
SPECIFICALLY DISCLAIMS ALL LIABILITY FOR DAMAGES RESULTING FROM
THE USE OF SUCH FORMAT OR OTHER CONTENTS.

DIF'™ Technical Specification

Table of Contents

1. Introduction

2. Constraints of the Format

3. Organization of the DIF Data File
4, The Header Section

4,1 The Header Item

4.1.1 The Topic
4,1.2 The Vector Number
4,1.3 The Numeric Value
4,1.4 The String Value
eader Items
4,2.1 The First Header Item
4,2.2 Vector Count
4,2.3 Tuple Count
4.2.4 The Last Header Item
4,2.5
4,2.6
4.2.7
4,2.8
4,2.9
4,2.1
4,2

4.2 Heade

Vector Label
Vector Comment
Field Size
Periodicity
Major Start
0 Minor Start.
.11 True Length
4,2.12 Units
4.2.13 Display Unlts
4,3 Defining New Header Items

5. The Data Section

5.1 The Type Inaicator Field

5.2 The Number Value Field

5.3 The String Value Field
5.3.1 Special Data Value
5¢3.2 Numeric Value and Value Indicator
5.3.3 String Value

6. Definitions

T. Applications Programs

7.1 The CCA/DMS Program

7.2 The TREND=-SPOTTER(R) Program

7.3 The VisiCalc(R) Program

7.4 TK!Solver

T«5 the VisiPlot and VisiTrend/VisiPlot Programs

I. Sample DIF File

II. Sample BASIC program that writes a DIF file
III. Sample BASIC program that reads a DIF file
IV. Sample Pascal program using a DIF file

Page i

Ansiltht

19249 B, BAGLEY RO,
CLEVELAND, OHIO 44130

—
OCOWVWWVWWWOO OO NINITNNoOOo0OoOUTUMUVU EEFTULLWLWWLWWLWN NV D = =

-l e
- O

—) -
[ACIN \CIN O I)

)]

T SO e~ L
O N Ul W N

rifent)

QAR YIIDAN 3 Aro0T
ORIAR QUHO QAL

tm

DIF Technical Specification

1. Introduction

This document is the technical specification of DIF, a format for the exchange
of data, developed by Software Arts Product Corp. It is a reference document
and not a tutorial. It includes a description of the DIF file organization and
structure, required items, and optional standard items. It also explains the
use of the optional standard items by specific applications. The last section
is an example of a DIF data file.

Programs should use defined standard items when possible. The DIF
Clearinghouse will update this document to describe new items as they are
defined and record their use in specific programs. Programmers developing new
software that incorporates new optional items should inform the Clearinghouse
fully about them so that they can be standardized for common use by any
program supporting the DIF format.

Programmers should remember that the program reading the data can be extremely
simple. The program writing the data must handle it in such a way that it can
be read by any program supporting DIF.

Within this text, upper case characters are actual values to be entered as
shown and lower case characters name the value to be entered to a field. It is
assumed that the ASCII character set is being used. See the section on
Definitions for a discussion of character sets.

2. Constraints of the Format

The DIF format was designed for ease of use, and, for the sake of simplicity,
certain constraints have been imposed on the format. Because DIF is not
intendea to be a wuniversal representation for all data, one of these
constraints is the representation of data in tables with rows of equal length
and columns of equal length. A second constraint is that, because many users
program in BASIC, the files must be compatible with BASIC programs. Programs
written in another language, such as Pascal, can use a set of subroutines to
read and write DIF files.

Below is a list of specific constraints on a DIF file.

s

1. Because some BASICs have only primitive facilities for reading and
writing strings, the convention of keeping numbers and strings on
separate lines has been adopted.

2. Two items, VECTORS and TUPLES, are required to support systems that
require preallocation of space.

3. Because some systems do not allow programs to test for the end of a

file, a special data value, EOD, provides graceful termination to a
program.

Page 1

DIF'® Technical Specification

4. To simplify programming, there are only two formats within the
file, and all fields are predefined as character strings or
numbers.

5. Strings must be enclosed in quotes if they contain characters other
than alphanumerics.

6. The character set is restricted to the printable ASCII characters.

T. Although DIF places no explicit restriction on the length of data
strings, some systems may impose restrictions.

Since the DIF format is not meant to meet all the needs for data
representation, it may be necessary to use multiple DIF files or additional
formats for some applications. A word processor, for example, would not use a
DIF file to store text but could use DIF files for tables of values within a
report.

3. Organization of the DIF Data File

A DIF file is a text file using the standard printable character set of the
host machine. The model for the data is a table. Fields are called vectors;
records are called tuples. Data is organized into vectors of equal 1length.
Each tuple consists of a row of corresponding values read across each vector.
The user determines tne specific groupings of vectors and tuples. Often
vectors are treated as columns and tuples are treated as rows, but because DIF
can transpose columns and rows, the terms vectors and tuples are used instead
of the terms columns ana rows.

The DIF file consists of two sections, a header section and a data section.

The header section contains descriptions of the file and the data section
contains the actual values.

4. The Header Section

The~ header section is composed of header items. There are four standard
required header items and several standard optional header items.

4,1 The Header Item

The header items describe the data organization. Each header item consists of
four fields arranged on three lines as illustrated below. The first line is a

Page 2

DIFt"m Technical Specification

token1, the second line consists of two numbers, and the third line contains a
string.

Topic
Vector Number, Numeric Value
"String Value"

4.1.1 The Topic

The first line of the header item is the Topic. It identifies the header item,
and must be a token.

4.1,2 The Vector Numbser

Tne first field on the second line is the Vector Number. If the header item
describes a specific vector, the Vector Number specifies the vector being
described. If the header item describes the entire file and not one specific
vector, the Vector Number is zero (0).

4,1.3 The Numeric Value

“The Value is.an:intégér and occupies'the'secﬁnd field of the second 1line,
separated by a comma from the Vector Number. If the header item does not use a
numeric value, the Value is zerao (0).

4.1.4 The String Value

The String Value occupies the third line of the header item. The String Value
is always enclosed in quotation marks. If it is not used, the line consists of
a’‘null string, a pair of quotations marks with no space between them.

4,2 Header Items

Thnere are four required header items. The other header items described in this
document are standard optional header items. The defined standard items
should be usea by new programs using DIF. If it is absolutely necessary, a new
header item may be defined to meet the needs of a particular program. For
details, see the section on Defining New Header Items.

1A token is an upper case string of alphanumeric characters. It is usually
short, 32 characters or 1less. See the Definitions section for more
information.

Page 3

DIF'™ Technical Specification

A program may ignore all header items until it finds the header item DATA,
described below.

The following four header items are required:

4.2.1 The First Header Item

TABLE
0,version
"title"

Tne neaaer item TABLE must be the first entry in the file. It identifies the
file as a DIF file. The version number must be 1. The "title"™ is the title of
the table and describes the data.

4,2.2 Vector Count

VECTORS

O,count
nn

The header item VECTORS specifies the number of vectors in the file.

Note: This header item must appear before hoader items that refer to vector
numbers. Otnerwise, it can appear anywhere within the header section.

4.2.3 Tuple Count

TUPLES

Oycount
nn

The header item TUPLES specifies the length of each vector (the number of
tuples). This can be used by a program to preallocate storage space for the
data. This item may appear anywhere within the header section.

Note: Programs reading the data assume that the tuple count is .correct. Some
programs may be able to generate this information only after all data has been
generated. These programs must reread the DIF file to count the tuples, and
rewrite the TUPLES item with the correct count.

Page 4

DIFt"m Technical Specification

4.,2.4 The Last Header Item

DATA

"o

The header item DATA must be the last header item. It tells the program that
all remaining data in the file are data values.

The following header items are optional. The programs that are known
to use them are noted with the item. For detailed information on each
program's specific wuse of the item, see the section below on
Applications Programs.

4.2.5 Vector Label

LABEL _
vectori,linei
"label"

The header item LABEL provides a label for the specified vector. The line
number provides an option for labels that span more than one line, and can be
ignored by a -system -that allows single line labels only. The values 0 and 1
are equivalent line numbers.

Note: Some programs do not use the LABEL field. If the first vector in a tuple
contains string values, the first data value in the tuple may be treated as a
lapel.

Used by the VisiPlottm and VisiTrend/VisiPlottm programs .

4.2.6 Vector Comment

COMMENT
vectorit,linei
"comment"

The header item COMMENT is similar to LABEL. It provides an option to systems
that allow an expanded description of a vector in addition to a label.

Used by the VisiPlot ana VisiTrend/VisiPlot programs.

4.2.7 Field Size

Page 5

DIF'® Technical Specification

SIZE

vector,bytes
"o

»

The header item SIZE provides to programs such as data base systems the option
to allocate fixed size fields for each value.

Because SIZE is an optional item, programs using SIZE must be able to reaa
files proauced by programs unable to generate SIZE information.

Used by the CCA/DMS program.

4.2.8 Periodicity

PERIODICITY

vectori#,period
nn

Tne heaaer item PERIODICITY provides the option of specifying a period in a
time series.

Used by the VisiPlot and VisiTrend/VisiPlot programs.

4.2.9 Major Start

MAJORSTART

vectorit,start
LAl

The header item MAJORSTART specifies the first year of a time series.

Used by the VisiPlot and VisiTrend/VisiPlot programs.,

4,2.10 Minor Start

MINORSTART

vectori#,start
LAl

The header item MINORSTART specifies the first period of a time series.

Used by the VisiPlot and VisiTrend/VisiPlot programs.

Page 6

DIF'® Technical Specification

4.2.11 True Length

TRUELENGTH
vectori#,length

nn

The header item TRUELENGTH specifies the portion of a vector that contains
significant values.

Used by the VisiPlot and VisiTrend/VisiPlot programs.

4.2.12 Units

UNITS
vectorit, 0
"name ([}

The header item UNITS specifies the unit of measure for the values in the
given vector. Name is the unit, for example meters or ft.

Used by the TK!Solver(tm) program.

4,2.13 Display Units

DISPLAYUNITS
vectori,0
" Name "

The header item DISPLAYUNITS specifies the unit in which the values in the
given vector should be displayed. This unit may be different from the one in
the UNITS fiela. The values in the given vector are always stored in the unit
specified in the UNITS field, and the application program is responsible for
making the value conversion between the UNITS and DISPLAYUNITS.

For example, a vector might be stored in km, but displayed in the program in
miles. The UNITS field woula be km, the DISPLAYUNITS field woula be miles,
and the values in the vector would be in km. Any program using the vector
would have to define the conversion between km and miles to display the values
in miles.

Used in the TK!Solver program.

4.3 Defining New Header Items

If there is no stanaard optional heaaer item to fulfill the specific need of a
subsystem, a new header item may be defined. Because the DIF format is

Page 7T

DIF'® Technical Specification

intenaed for common use, new optional header items should be standardized
through the DIF Clearinghouse. They will then be added to this document.

To be accepted as standara items, new optional items must be consistent with
existing conventions.

An optional item extends the format for a sSpecific application. Any program
reading the DIF file should be able to operate without optional items. If a
reaaing program requires the information provided by an optional item, it
should prompt the user to supply the missing information and not require the
item itself.

5. The Data Section

The data section consists of a series of tuples. The Data Values within the
tuples are organized in vector sequence.

Each Data Value represents one element of data in the file. The data may be
either the actual data or one of the two Special Data Values that mark the
beginning of a tuple (BOT) and the end of data (EOD) in the file.

Each Data Value consists of two lines. The first line consists of two fields
containing numeric values, and the second 1line consists of one field
containing a string value. The format is:

Type Indicator, Number Value
String Value

5.1 The Type Indicator Field

The Type Indicator is an integer that tells the program what kind of data is
represented by this value. There are currently three possible values.

-1 The data is a Special Data Value, indicating either the beginning of a
tuple or the end of data. The Number Value is zero (0) and the String Value
is either BOT or EOD. See the aescription below of Special Data Values.,

0 The data is numeric. The Number Value field contains the actual value and
tne String Value field contains a Value Indicator. See the descriptions
below of the Number Value and String Value fields.

1 The data is a string value. The Number Value is zero (0) and the String
Value field contains the actual string value.

Page 8

DIFt'm Technical Specification

5.2 The Number Value Field

Wnen the Type Indicator is 0, the Number Value field contains the actual
value. The value must be a decimal (base 10) number. It may be preceded by a
sign (+ or =) and it may have a decimal point. It may be preceded or followed
by one or more blanks. If the data value contains an exponent of a power of
ten, the value is followed by the letter E ana the signed or unsigned exponent
power of ten.

Note: This is the only place where DIF allows a non-integer value. Some
programs accept only integer values.

5.3 The String Value Field

The contents of the String Value field are dependent on the Type Indicator.

5.3.1 Special Data Value

If the Type Indicator is -7, the String Value is one of the two Special Data
Values, BOT or EOD, and the Number Value is 0.

Each tuple begins with the Special Data Value BOT (Beginning of Tuple). If a
program cannot generate a VECTORS header item before generating all data, it
can use the Special Data Value BOT to determine the number of vectors in the
file by counting the number of Data Values between BOTs when it rereaas the
file. A program can also verify its position in a file by using the BOT
Special Data Value.

The Special Data Value EOD (End of Data) indicates the ena of data in the
file. The EOD occurs at the end of the last tuple in the file. If the program
is unable to generate a TUPLES header item before generating all data, it can
determine the number of tuples by counting the number of BOTs before the EOD
when it rereads the file. A program can also use the EOD Special Data Value to
detect the end of the file.

5¢3.2 Numeric Value and Value Indicator

If the Type Indicator is 0, the data is numeric, and the String Value is one
of the Value Indicators described below. The Value Indicator overrides the
value.

A subsystem may define Value Indicators for its own needs. New Value
Indicators should be registered with the DIF Clearinghouse.

The Value Indicators currently defined are:

v Value - This is the String Value most commonly used with a numeric
value. The Number Value contains the actual value.

Page 9

DIF*® Technical Specification

NA Not Available - The value is marked as not available. The Number Value

is 0.

ERROR The value represents the result of an invalid calculation. The Number
Value is 0.

TRUE Logical value. The Number Value is 1.

FALSE Logical value. The Number Value is O.

The String Value can be ignored in favor of the Number Value, or all values
with a Value Indicator other than V can be considered nonexistent. Quotes are
not permitted around the Value Indicator.

5.3.3 String Value

)

If the Type Indicator is 1, the String Value is the actual character string.
If the value is a token, the quotation marks .are optional. However, if there
is a peginning quotation mark, there must be a terminating quotation mark.

6. Definitions

This section aefines specific characteristies of DIF.

Character Sets

This document assumes use of the ASCII character set. The

following characters are permitted:

IM(HSR&" () #4y=/
01234567892 ;<=>?
@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]"_
“abedefghi jklmno
parstuvwxyz{ |}~

(The first character in this list is a space.)

There are 95 printable characters, including the space. If the
host computer has more than 95 characters, the additional
characters must be mapped into the 95 ASCII characters to
transfer data to another machine.

Some computers permit only 64 characters. When data is
transfered to these machines, lower case characters and the
characters “{|}~ are mapped into their corresonding upper case
characters. If these transformations affect the integrity of
the aata, a§sociated documentation shoula specify the effect.

Page 10

DIFtm Technical Specification

Transfers between character sets should be transparent to most
users. To assure compatibility, strings should not contain
nonprinting characters.

EBCDIC EBCDIC is a binary representation of characters and is used
primarily for large IBM computers. An awareness of the
representation used is not essential, but if files are
transferred between machines they must be converted to the
standard representation of the host machine.

Because EBCDIC defines more than the 95 standara printable
characters, users should avoid the additional characters when
preparing data files on an EBCDIC machine.

String Length Some programs place a length limit on strings that they read.
This results in the truncation of long string values. Some
systems also limit the length of 1lines in a data file.
Programs should support a minimal string 1length of 64
characters, but longer ones are preferable.

String Delimiters
Some systems delimit strings with apostrophes instead of
quotation marks. When files are transferred to or from these
systems, appropriate changes must be made.

- Tokens A token is a string consisting of upper case alphanumeric
’ characters. It shoula have a maximum length of 32 characters.
Commonly, tokens may or may not be contained within quotation
marks; however, a token that is a required string, such as a
header item topic, must be represented without quotation
marks.

"Floating Point Numbers
A floating poirc number consists of an optional sign and a
series of digits followed by an optional decimal point. The
number may be followed by the letter E (exponent) and a signed
decimal exponent.

Note: Some systems generate the letter D to indicate a aouble
precision floating point number. This is not standard, but it

== can be read by compatible programs within a single system.
When transfering data to other computers, the D must be
converted to an E.

T. Applications Programs

This section records the specific use of DIF by applications programs that
support it. Programmers who intend to interface with any of these programs
should note the specifics listed here. Standardized optional items used by
these applications are listed in the general section on Optional Header Items.
However, if a program uses a header item that varies significantly from the

Page 11

DIF™ Technical Specification

conventions, it is mentioned only in this section. The accuracy of this
information is not guaranteed.

7.1 The CCA/DMS Program
Published and distributed by VisiCorp.

Uses: SIZE .

7.2 The TREND-SPOTTER(R) Program
Published and distributed by Software Resources, Inc.

The TREND-SPOTTER program requires that the DIF file contain either only one
tuple or only one vector.

7.3 The VisiCalc(R) Program

Publishea and distributed by VisiCorp.

Program created and written by Software Arts(tm).

The VisiCalc program does not generate the LABEL items. Some programs
interfacing to the VisiCalc program nave adopted the convention of examining

the first Data Value in a tuple, and, if it is a string value, treating it as
a label.

7.4 TK!Solver
Published ana distributed by Software Arts, Inc.

Uses: UNITS, DISPLAYUNITS

7.5 the VisiPlot and VisiTrend/VisiPlot Programs
Published and aistributed by VisiCorp.

carly versions of the VisiPlot and VisiTrend/VisiPlot programs used the Number
Value ana String Value incorrectly, storing the Number Value in the String
Value field. Programs exchanging data with these versions should check the
String Value. If it is not null, the string must be converted ana the Number

Value computea.

Uses: LABEL, COMMENT, MAJORSTART, MINORSTART, PERIODICITY, TRUELENGTH

Page 12

DIF‘t’m Technical Specification

I. Sample DIF File

This is an example of a DIF data file. The data in the file is representea by
the table below.

PROFIT REPORT

YEAR |SALES |COST |PROFIT
1960 | 100 | 90 | 10 .
1981 | 110 | 101 | 9
1982 | 121 | 110 | 1M

The Data File

TABLE = eeeee- >
0,1

"PROFIT REPORT"
VECTORS ====> Header
0,4 = > =
=i ——==> Item
TUPLES

0,3

nm

LABEL

1,0

" YEAR"

LABEL

2,0

"SALES"

LABEL

3,0

" COST"

LABEL

4,0

"PROFIT"

DATA

0,0

(0 _-__;->

Header

VVVVVVVVVVYVVVYVVYVVYVYVYVYVYV

Page 13

s

DIF'® Technical Specification

=150 = e e >
BOT
0,1980
v
0,100
Vv ;
0,90

\'

0,10

v

-1,0
BOT

VMVNNVNVN VNNV NN

091981 ------ >
v
0,110
v
0,101 ===> Data

> Data
>
>
>
v -==> Value >
>
>
>
>

Part
Tuple

0,9
v
=150

BOr 0 sacee

0, 1982

v

0,121

v

0,110

v

0,11

v

w 15d

BB 5 0 o Sememmaae

VVVVVVVVVVVVVVVVVVVV

Page 14

II. Samp

DIFtm Technical Specification

le BASIC program that writes a DIF file

This program enters student records into a file by prompting the user for

student!'

100
110
120
130
140
150
1600

1000
1010
1020
1030
1035
1040
1050
1000
1070
1080
1090

2000
2010
2020
2025
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180

3000
3010
3020
3030
3040

s name and test scores and copying the information into a DIF file.

REM - THIS PROGRAM CREATES A DIF FILE CONTAINING THE

REM - NAME AND TEST SCORES OF A GIVEN NUMBER OF STUDENTS.
REM - IT PROMPTS FOR A FILE NAME, THE TOTAL NUMBER OF
REM - STUDENTS, AND THE NUMBER OF TEST SCORES FOR

REM - EACH STUDENT. IT THEN PROMPTS FOR A STUDENT'S

REM - NAME AND TEST SCORES, AND WRITES THEM TO THE

REM - FILE AS A TUPLE.

PRINT "OUTPUT FILE NAME:"; :REM - GET FILE NAME.
INPUT F$
OPEN "O",1,F$ ¢tREM - OPEN FILE FOR OUTPUT.
PRINT "NUMBER OF STUDENTS:";
¢:REM - PROMPT FOR NUMBER OF
INPUT NT ‘REM - TUPLES.
PRINT "NUMBER OF TEST SCORES PER STUDENT:";
INPUT NV ¢tREM - NUMBER OF VECTORS IS
NV = NV + 1 ¢REM - NUMBER OF SCORES + 1.
GOSUB 3000 ¢tREM - USE SUBROUTINE TO
¢REM - OUTPUT DIF HEADER.
FOR I =1 TO NT ¢tREM - OUTPUT A TUPLE FOR
¢REM - EACH STUDENT.

T =-1: V= 0: S$ = "BOT"
:REM - OUTPUT BOT SPECIAL
GOSUB 4000 :REM - DATA VALUE.
PRINT "NAME OF STUDENT #";I;
INPUT S$:REM - GET NAME OF THIS STUDENT.
T=1: V=0 :REM - OUTPUT AS STRING DATA
GOSUB 4000 :REM - VALUE.
FOR J = 1 TO NV=1 :REM - PROCESS EACH SCORE.
PRINT "SCORE #";J;
INPUT V :REM - GET SCORE.
T = 03 S$ = "V" :REM - OUTPUT SCORE AS A DATA
GOSUB 4000 :REM - VALUE.
NEXT J
NEXT I
T =-1: V = 0: S§ = "EOD" :REM - OUTPUT EOD SPECIAL DATA
GOSUB 4000 tREM - VALUE.
CLOSE 1 :REM - CLOSE THE OUTPUT FILE.
STOP :REM - DONE.

¢:REM - ROUTINE TO OUTPUT HEADER.
PRINT#1,"TABLE" :PRINT#1,"0,1":GOSUB 3500
PRINT#1,"TUPLES":PRINT#1,"0,";NT:GOSUB 3500
PRINT#1,"VECTORS" :PRINT#1,"0,";NV:GOSUB 3500
PRINT#1,"DATA":PRINT#1,"0,0":GOSUB 3500

Page 15

pIF'D Technical Specification

3050 RETURN

3500 ¢REM
3510 ¢REM
3520 PRINT#1,CHR$(34);CHR$(34) ¢REM
3530 RETURN

ROUTINE TO OUTPUT A
NULL STRING ("").
PRINT 2 QUOTATION MARKS.

4000 ¢REM - ROUTINE TO OUTPUT A DATA
4010 ¢REM - VALUE. T IS THE TYPE
4020 $REM - INDICATOR, V IS THE
4030 ¢REM - NUMBER VALUE, AND S$
4040 ¢REM - IS THE STRING VALUE.

4050 PRINT#1,T;%,";V
4060 PRINT#1,S$

4070 RETURN

5000 END

Page 16

DIF‘tm Technical Specification

III. Sample BASIC program that reads a DIF file

This program uses the output DIF file from the previous sample program
calculate an average score and letter grade for each student.

100
110
120
130
140

500
510
520
530
535
540
550
560
570
513
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720

5000
5010
5020
5030
5040
5050
5060

:REM - THIS PROGRAM READS A DIF FILE CONTAINING THE

TEST SCORES OF A GROUP OF STUDENTS, CALCULATES
AN AVERAGE SCORE FOR EACH STUDENT, MATCHES THE

STUDENT'S NAME, AVERAGE, AND LETTER GRADE.

MAXIMUM OF 100 VECTORS.

T IS THE TYPE INDICATOR, V IS
THE NUMBER VALUE, AND V$ IS
THE STRING VALUE OF EACH DATA

INITIALIZATION SUBROUTINE.
SUBROUTINE TO READ HEADER.
FOR EACH TUPLE,

GET ALL VECTOR ELEMENTS IN

M IS THE SUM -OF THE SCORES.
FOR EACH VECTOR VALUE,
V$(J) :REM - PRINT NAME.

IF M<=70 AND M>50 THEN PRINT "THIS STUDENT'S FINAL GRADE IS D"
IF M<=85 AND M>70 THEN PRINT "THIS STUDENT'S FINAL GRADE IS C"
IF M<=94 AND M>85 THEN PRINT "THIS STUDENT'S FINAL GRADE IS B"

INITIALIZATION CODE.

OPEN FILE FOR INPUT.
INITIAL VECTOR COUNT.
INITIAL TUPLE COUNT.

¢REM -
$REM -
¢REM - AVERAGE TO A LETTER GRADE, AND PRINTS THE
¢REM =
DIM T(100) ¢REM -
DIM V(100) - ¢REM -
DIM V$ (100) ¢REM -
sREM -
¢REM - VALUE.
GOSUB 5000 ¢REM -
GOSUB 6000 $REM -
FOR I = 1 TO NT $REM -
GOSUB 7000 ¢REM -
¢REM - TUPLE.
M=0 :REM -
FOR J = 1 TO NV :REM -
IF T(J)=1 THEN PRINT
IF T(J)=0 THEN M = M+V(J) ¢REM - ADD SCORES.
NEXT J
M = M/(NV=1): PRINT M :REM - PRINT STUDENT'S AVERAGE
IF M<=50 THEN PRINT "THIS STUDENT'S FINAL GRADE IS F"
IF M>94 THEN PRINT "THIS STUDENT'S FINAL GRADE IS A"
NEXT I
CLOSE 2
PRINT "FINISHED CALCULATING GRADES"
STOP
:REM -
PRINT "FILE NAME";
INPUT F$
OPEN "I",2,F$:REM -
NV = 0 $REM -
NT = 0 ¢REM -
RETURN

Page 17

to

6000
6010
6020
6030
6040
6050
6060
6065
6070
6500
6510
6520
6530
6540
6600
6610

7000
7010
7020
7030
7040
7050
7060
7070
7080
7090
7100
7110

8000
8010
8020
8030

9000
9010
9020
9030
9040

DIF'® Technical Specification

*REM - READ HEADER. GET NUMBER OF VECTORS AND TUPLES.
INPUT#2,T$ $REM - GET TOPIC.
INPUT#2,S,N tREM - GET VECTOR NUMBER AND VALUE.
INPUT#2,S$ ¢REM - GET STRING VALUE.
IF T$-"VECTORS" THEN 6500:REM - CHECK FOR KNOWN HEADER
IF T$="TUPLES" THEN 6600 :REM - ITEMS.
IF T$="DATA" THEN RETURN

¢REM - "DATA" ENDS HEADER.
GOTO 6010 $REM - IGNORE UNKNOWN ITEMS.
NV = N ¢REM - NUMBER OF VECTORS.
IF NV<=100 THEN 6010 :REM - CHECK FOR 100 OR LESS VECTORS.,

PRINT "TOO MANY VECTORS. PROGRAM CAPACITY 100 VECTORS."

CLOSE 2

STOP

NT = N ¢REM - NUMBER OF TUPLES.
GOTO 6010 $REM - GET NEXT HEADER ITEM.

¢REM - SUBROUTINE TO GET ALL VECTOR ELEMENTS IN A TUPLE.
GOSUB 8000 ¢REM - GET NEXT DATA VALUE.
IF T1<>-1 THEN 9000 :REM - MUST BE BOT, ELSE ERROR
IF S$<>"BOT" THEN 9000

FOR K = 1 TO NV :REM - GET EACH DATA VALUE.
GOSUB 8000
IF T1>1 THEN 9000
T(K) = $REM - SAVE TYPE INDICATOR.
V(K) = $REM - SAVE NUMBER VALUE.
V$(K) = $ tREM - SAVE STRING VALUE.
NEXT K
RETURN
$REM - SUBROUTINE TO GET NEXT DATA VALUE.
INPUT#2,T1,V1 $REM - GET TYPE INDICATOR, NUMERIC
INPUT#2,S$ $REM - VALUE, AND STRING VALUE.
RETURN
$REM - ERROR ROUTINE
PRINT "ERROR IN FILE FORMAT"

CLOSE 2 :REM - END PROGRAM
STOP
END

Page 18

DIF'® Technical Specification

IV. Sample Pascal program using a DIF file

This program is a Pascal program that reads data from a DIF file into an array
and aisplays the results on the terminal.

{ This is a simple program which reads DIF file data into an array and
displays the results on the terminal. It makes use of a procedure
called "get dif array" which handles only numeric data. It is written
for Apple Pascal 1.1 and may require modification to run on other systems. }

program dif read;

const
max _vector = 10; { maximum number of vectors }
max_tuple = 10; { maximum number of tuples }
type
vector_index = 0..max_vector;
tuple_index = 0..max_tuple;
dif_array = array[1..max_vector, 1..max_tuple] of real;
var
in file ¢ text; num_vectors : vector_index;]
fname ¢ string[15]; num_tuples : tuple index;
matrix ¢ dif_array; code, i, J ¢ integer;

Page 19

DIF‘t'm Technical Specification

{ "Get_dif_ array" reads a DIF file and returns the file data (currently
only numeric) in an array. Also returns number of vectors and tuples
-- these must be specified in file header -- and an error code. }

procedure get_dif array (var dif file: text; var real array: dif_array;
var nvectors: vector_index; var ntuples: tuple_index;
var return_coae: integer);

const { currently defined data types }
special = -1; numeric = 03 char string = 1; other = 23

type
header_item = record
topic ¢ string;
vector_num ¢ vector_index;
value ¢ integer;
string value : string
end;
data_value = record
kind : =1..2; { currently defined data types}
number_value : real;
string_value : string
end;
var
hdr_item ¢ header_item;
data_val ¢ data_value;
tuple, vector : integer;

{ "Read_integer" reads an integer terminated with a comma. The routine
is required because this Pascal dialect's "read" procedure recognizes
only <space>, eoln and eof as delimiters of integer values. }

procedure read_integer (var number: integer);

var
sign, magnitude : integer;
ch : char;
begin
sign := 1; magnitude := 0; { initialize }
read (difile, ch); { get 1st character }
while ch <> ',' do { comma is delimiter }
begin
case ch of
'=' 3 sign := =1;
101,11','21,'3','u"15|,'6"'71"8"19'
¢ magnitude := magnitude * 10 + ord(ch) - ord('0')
end; { case, }
read (difile, ch) { get next character }
end;
number := sign * magnitude { return result }
end; { read_integer }

Page 20

DIF D

Technical Specification

{ "Read_string" deletes leading and trailing blanks and strips the

quotes from quoted strings. }

procedure read_string (var str: string);
begin
readln (difile, str);
while str[1] = ' ' do
delete (str,-1, 1);
Af str(1] = '
then begin
delete (str, 1, 1);
delete (str, pos('"', str),
length(str) - pos('"',
end
else if pos(' ', str) > 0

then delete (str, pos(' ', str), .

length(str) - pos(!
end; { read_string }

Page 21

{ leading blanks }

{ strip quotes }

str) + 1)
{ trailing blanks }

'y str) + 1)

DIF'® Technical Specification

procedure read_header_item (var item: header_item);

begin
read_string (item.topic);
read integer (item.vector _num);
readln (difile, item.value);
read_string (item.string_value)
end; { read _header_item }

{ get topic }

{ get vector number }
{ get value }

{ get string value }

procedure read _data value (var value: data_value);

begin
read_integer (value.kind);
readln (difile, value.number _value);
read_string (value.string value)
end; { read_cata_value }

begin { get_dif_array }

return_code := 0;
nvectors := 0; ntuples := 0;
repeat

read_header_item (hdr_item);
if hdr item. topic = 'VECTORS'
then nvectors := hdr_item.value
else if hdr item.topic = 'TUPLES'
then ntuples := hdr_item.value
until hdr_item.topic = 'DATA';

if (nvectors = 0) or (ntuples = 0)
then return_code := 1
else begin
for tuple := 1 to ntuples do
begin
read_data_value (data_val);
for vector = 1 to nvectors
begin

read_data_value (data_val);
1f data val.kind = numeric

t data type }
et number value }
t string value }

{
{
{

® & ®
s 5%

{ assume no problems }
{ initialize }
{ read header }

{ vector count }

{ tuple count }.

{ check counts }

{ read data }

{ BOT }

then real_array[vector, tuple] :=
data_val.number_value

end
end;
read_data_value (data_val);
if (data val.kind <> special) or

(data_val. string value <> 'EOD')

then return_code :=
end

end; { get_dif_array }

Page 22

{ EOD }

DIF'® Technical Specification

begin { dif_read }

writeln; { get DIF file name }
write ('DIF file name: ');

b
readln (fname);
reset (in_file, fname); { open and point to BOF }

get_dif_array (in_file, matrix, num vectors, num_tuples, code);

close (in_file); { close DIF file }
case code of { display results }
0: begin
writeln;
writeln ('"', fname:15, '"', ' contains ', num vectors:3,

' vectors and ', num tuples:3, ' tuplss.');
writeln ('The data values follow in tuple order:');
writeln;
for i := 1 to num_tuples do

begin
for j := 1 to num_vectors do
write (matrix|j, 1]:10:2);
writeln
end;
writeln
- end; - -
1: writeln ('Error. Tuple or vector count not found.');
2: writeln ('Error. Data not properly terminated.')
end { case }

end. { dif_read }

Page 23

Thank you for your interest in DIF, the format for data interchange
developed by Software Arts Products Corp. Publications currently
available are the DIF Program List, the DIF Technical Specification and
a reprint of the article, "DIF, A Format for Data Exchange between
Applications Programs", that appeared in the November issue of BYTE
magazine. These may be obtained from the DIF Clearinghouse.

The Program List is a list of commercially available programs which can
exchange data through DIF files. The Technical Specification is a
reference document on DIF file organization and structure.

The DIF Clearinghouse was created to coordinate and disseminate
information on the use of DIF. If you have any information on
commercial programs that support DIF or are developing such a program
yourself, we would appreciate hearing from you.

To order the reprint, Technical Specification and Program List, please
send a check or money order in the amount of $6.00 to the DIF
Clearinghouse, P.0O. Box 638, Newton Lower Falls, MA 02162.

Thank you again for your interest.

